31. The number of different binary trees with 6 nodes is ______.
(a) Huffman codes  | (i) O(n2) |
(b) Optimal polygon triangulation | (ii) θ(n3) |
(c) Activity selection problem | (iii) O(nlgn) |
(d) Quicksort | (iv) θ(n) |
 | (a) | (b) | (c) | (d) |
(1) | (i) | (ii) | (iv) | (iii) |
(2) | (i) | (iv) | (ii) | (iii) |
(3) | (iii) | (ii) | (iv) | (i) |
(4) | (iii) | (iv) | (ii) | (i) |