EMC Q.40

0. The greatest and least value of f(x) = x4- 8x3 + 22x2 - 24x +1 in [0, 2] are

  • Option : D
  • Explanation : f(x) = x4- 8x3 + 22x2 - 24x +1 , f(0) = 1
                                                       f(2) = 2- 8.23 + 22.22 - 24.2 + 1 = -7
    Now                                           f ' (x) = 4x3-24x2 + 44x - 24
    For maximum and minimum,        f ' (x) = 0
    ⇒                                                 4x3-24x2 + 44x - 24 = 0
    ⇒                                                 4(x - 1)(x - 2)(x - 3) = 0
    therefore                                      x = 1, 2, 3
    Since x = 3 doesnot lie in [0, 2]
    therefore, consider only x = 1 and x = 2
    We have                                     f(1) = 14 - 8.13 +22.12 - 24.1 + 1 = -8
    Greatest of f(x) = largest of {1, -7, -8} = 1
    Least of f(x) = smallest of {1, -7, -8} = -8
Cancel reply

Your email address will not be published. Required fields are marked *


Cancel reply

Your email address will not be published. Required fields are marked *